Groovy Language Documentation

Version 4.0.10

Introduction

Groovy...

is an agile and dynamic language for the Java Virtual Machine

builds upon the strengths of Java but has additional power features inspired by languages like
Python, Ruby and Smalltalk

makes modern programming features available to Java developers with almost-zero learning
curve

provides the ability to statically type check and statically compile your code for robustness and
performance

supports Domain-Specific Languages and other compact syntax so your code becomes easy to
read and maintain

makes writing shell and build scripts easy with its powerful processing primitives, OO abilities
and an Ant DSL

increases developer productivity by reducing scaffolding code when developing web, GUI,
database or console applications

simplifies testing by supporting unit testing and mocking out-of-the-box
seamlessly integrates with all existing Java classes and libraries

compiles straight to Java bytecode so you can use it anywhere you can use Java

Groovy Language Specification

Syntax

This chapter covers the syntax of the Groovy programming language. The grammar of the language
derives from the Java grammar, but enhances it with specific constructs for Groovy, and allows
certain simplifications.

Comments

Single-line comment

Single-line comments start with // and can be found at any position in the line. The characters
following //, until the end of the line, are considered part of the comment.

// a standalone single line comment
println "hello" // a comment till the end of the line

Multiline comment

A multiline comment starts with /* and can be found at any position in the line. The characters
following /* will be considered part of the comment, including new line characters, up to the first
*/ closing the comment. Multiline comments can thus be put at the end of a statement, or even
inside a statement.

/* a standalone multiline comment
spanning two lines */
println "hello" /* a multiline comment starting
at the end of a statement */
println 1 /* one */ + 2 /* two */

Groovydoc comment

Similarly to multiline comments, Groovydoc comments are multiline, but start with /** and end
with */. Lines following the first Groovydoc comment line can optionally start with a star *. Those
comments are associated with:

* type definitions (classes, interfaces, enums, annotations),

* fields and properties definitions

* methods definitions

Although the compiler will not complain about Groovydoc comments not being associated with the
above language elements, you should prepend those constructs with the comment right before it.

/**

* A (Class description

*/

class Person {
/** the name of the person */
String name

/**

* Creates a greeting method for a certain person.
*

* @param otherPerson the person to greet
* @return a greeting message
*/
String greet(String otherPerson) {
"Hello ${otherPerson}"
}

Groovydoc follows the same conventions as Java’s own Javadoc. So you’ll be able to use the same
tags as with Javadoc.

In addition, Groovy supports Runtime Groovydoc since 3.0.0, i.e. Groovydoc can be retained at
runtime.

Runtime Groovydoc is disabled by default. It can be enabled by adding JVM option

NOTE -Dgroovy.attach.runtime.groovydoc=true

The Runtime Groovydoc starts with /**@ and ends with */, for example:

/**@
* Some class groovydoc for Foo
*/
class Foo {
/**@
* Some method groovydoc for bar
*/
void bar() {
}
}

assert Foo.class.groovydoc.content.contains('Some class groovydoc for Foo') @
assert Foo.class.getMethod('bar', new Class[@]).groovydoc.content.contains('Some
method groovydoc for bar') @

@ Get the runtime groovydoc for class Foo

@ Get the runtime groovydoc for method bar

Shebang line

Beside the single-line comment, there is a special line comment, often called the shebang line

understood by UNIX systems which allows scripts to be run directly from the command-line,
provided you have installed the Groovy distribution and the groovy command is available on the
PATH.

#!/usr/bin/env groovy
println "Hello from the shebang line"

The # character must be the first character of the file. Any indentation would yield a

NOTE I
compilation error.

Keywords

Groovy has the following reserved keywords:

Table 1. Reserved Keywords

abstract assert break case
catch class const continue
def default do else
enum extends final finally
for goto if implements
import instanceof interface native
new null non-sealed package
public protected private return
static strictfp super switch
synchronized this threadsafe throw
throws transient try while

Of these, const, goto, strictfp, and threadsafe are not currently in use.

The reserved keywords can’t in general be used for variable, field and method names.

A trick allows methods to be defined having the same name as a keyword by surrounding the
name in quotes as shown in the following example:

// reserved keywords can be used for method names if quoted

def "abstract"() { true }
// when calling such methods, the name must be qualified using "this."

this.abstract()

Using such names might be confusing and is often best to avoid. The trick is primarily
intended to enable certain Java integration scenarios and certain DSL scenarios where having

core-domain-specific-languages.html

"verbs" and "nouns" with the same name as keywords may be desirable.

In addition, Groovy has the following contextual keywords:

Table 2. Contextual Keywords
as in permits record

sealed trait var yields

These words are only keywords in certain contexts and can be more freely used in some places, in
particular for variables, fields and method names.

This extra lenience allows using method or variable names that were not keywords in earlier
versions of Groovy or are not keywords in Java. Examples are shown here:

// contextual keywords can be used for field and variable names
def as = true
assert as

// contextual keywords can be used for method names

def in() { true }

// when calling such methods, the name only needs to be qualified using "this."
in scenarios which would be ambiguous

this.in()

Groovy programmers familiar with these contextual keywords may still wish to avoid using
those names unless there is a good reason to use such a name.

The restrictions on reserved keywords also apply for the primitive types, the boolean literals and
the null literal (all of which are discussed later):

Table 3. Other reserved words

null true false boolean
char byte short int
long float double

While not recommended, the same trick as for reserved keywords can be used:

def "null"() { true } // not recommended; potentially confusing
assert this.null() // must be qualified

Using such words as method names is potentially confusing and is often best to avoid,
however, it might be useful for certain kinds of DSLs.

core-domain-specific-languages.html

Identifiers

Normal identifiers
Identifiers start with a letter, a dollar or an underscore. They cannot start with a number.
A letter can be in the following ranges:

* 'a' to 'z' (lowercase ascii letter)
* 'A'to "Z' (uppercase ascii letter)
* "\u00CO' to "\u00DE'
* '\uOODS8' to "\uOOF6'
* "\uOOF8' to "\uOOFF"
* "\u0100' to "uFFFE'

Then following characters can contain letters and numbers.

Here are a few examples of valid identifiers (here, variable names):

def name

def item3

def with_underscore
def $dollarStart

But the following ones are invalid identifiers:

def 3tier
def a+b
def ai#ib

All keywords are also valid identifiers when following a dot:

foo.as
foo.assert
foo.break
foo.case
foo.catch

Quoted identifiers

Quoted identifiers appear after the dot of a dotted expression. For instance, the name part of the
person.name expression can be quoted with person."name" or person.'name'. This is particularly
interesting when certain identifiers contain illegal characters that are forbidden by the Java
Language Specification, but which are allowed by Groovy when quoted. For example, characters
like a dash, a space, an exclamation mark, etc.

def map = [:]

map."an identifier with a space and double quotes" = "ALLOWED"
map.'with-dash-signs-and-single-quotes' = "ALLOWED"

assert map."an identifier with a space and double quotes" == "ALLOWED"
assert map. 'with-dash-signs-and-single-quotes' == "ALLOWED"

As we shall see in the following section on strings, Groovy provides different string literals. All kind
of strings are actually allowed after the dot:

map. 'single quote'
map. "double quote"

map.' ' 'triple single quote
map."""triple double quote
map./slashy string/

map.$/dollar slashy string/$

There’s a difference between plain character strings and Groovy’s GStrings (interpolated strings), as
in that the latter case, the interpolated values are inserted in the final string for evaluating the
whole identifier:

def firstname = "Homer"

map."Simpson-${firstname}" = "Homer Simpson"
assert map.'Simpson-Homer' == "Homer Simpson"
Strings

Text literals are represented in the form of chain of characters called strings. Groovy lets you
instantiate java.lang.String objects, as well as GStrings (groovy.lang.GString) which are also called
interpolated strings in other programming languages.

Single-quoted string

Single-quoted strings are a series of characters surrounded by single quotes:

'a single-quoted string'

NOTE Single-quoted strings are plain java.lang.String and don’t support interpolation.

String concatenation

All the Groovy strings can be concatenated with the + operator:

assert 'ab' == 'a' + 'b'

Triple-single-quoted string

Triple-single-quoted strings are a series of characters surrounded by triplets of single quotes:

"""a triple-single-quoted string'"’

NOTE Triple-single-quoted strings are plain java.lang.String and don’t support
interpolation.

Triple-single-quoted strings may span multiple lines. The content of the string can cross line

boundaries without the need to split the string in several pieces and without concatenation or

newline escape characters:

def aMultilineString = '''line one
line two
line three'''

If your code is indented, for example in the body of the method of a class, your string will contain
the whitespace of the indentation. The Groovy Development Kit contains methods for stripping out
the indentation with the String#stripIndent() method, and with the String#stripMargin() method
that takes a delimiter character to identify the text to remove from the beginning of a string.

When creating a string as follows:

def startingAndEndingWithANewline = "'’
line one

line two

line three

You will notice that the resulting string contains a newline character as first character. It is possible
to strip that character by escaping the newline with a backslash:

def strippedFirstNewline = """\
line one

line two

line three

assert !strippedFirstNewline.startsWith('\n")

Escaping special characters

You can escape single quotes with the backslash character to avoid terminating the string literal:

'an escaped single quote: \' needs a backslash'

And you can escape the escape character itself with a double backslash:

'an escaped escape character: \\ needs a double backslash'

Some special characters also use the backslash as escape character:

Escape sequence Character

\b backspace

\f formfeed

\n newline

\r carriage return

\s single space

\t tabulation

\\ backslash

\' single quote within a single-quoted string (and optional for triple-

single-quoted and double-quoted strings)

\" double quote within a double-quoted string (and optional for
triple-double-quoted and single-quoted strings)

We’ll see some more escaping details when it comes to other types of strings discussed later.

Unicode escape sequence

For characters that are not present on your keyboard, you can use unicode escape sequences: a
backslash, followed by 'u’, then 4 hexadecimal digits.

For example, the Euro currency symbol can be represented with:

'The Euro currency symbol: \u20AC'

Double-quoted string

Double-quoted strings are a series of characters surrounded by double quotes:

"a double-quoted string"

Double-quoted strings are plain java.lang.String if there’s no interpolated

NOTE . S i L.
expression, but are groovy.lang.GString instances if interpolation is present.

NOTE To escape a double quote, you can use the backslash character: "A double quote: \"".

String interpolation

Any Groovy expression can be interpolated in all string literals, apart from single and triple-single-
quoted strings. Interpolation is the act of replacing a placeholder in the string with its value upon
evaluation of the string. The placeholder expressions are surrounded by ${}. The curly braces may
be omitted for unambiguous dotted expressions, i.e. we can use just a $ prefix in those cases. If the
GString is ever passed to a method taking a String, the expression value inside the placeholder is
evaluated to its string representation (by calling toString() on that expression) and the resulting
String is passed to the method.

Here, we have a string with a placeholder referencing a local variable:

def name = 'Guillaume' // a plain string
def greeting = "Hello ${name}"

assert greeting.toString() == 'Hello Guillaume'

Any Groovy expression is valid, as we can see in this example with an arithmetic expression:

def sum = "The sum of 2 and 3 equals ${2 + 3}"
assert sum.toString() == 'The sum of 2 and 3 equals 5'

Not only are expressions allowed in between the ${} placeholder, but so are
statements. However, a statement’s value is just null. So if several statements are
inserted in that placeholder, the last one should somehow return a meaningful
value to be inserted. For instance, "The sum of 1 and 2 is equal to ${defa =1; def b =
2; a + b}" is supported and works as expected but a good practice is usually to stick
to simple expressions inside GString placeholders.

NOTE

In addition to ${} placeholders, we can also use a lone §$ sign prefixing a dotted expression:

def person = [name: 'Guillaume', age: 36]
assert "$person.name is $person.age years old" == 'Guillaume is 36 years old'

But only dotted expressions of the form a.b, a.b.c, etc, are valid. Expressions containing
parentheses like method calls, curly braces for closures, dots which aren’t part of a property
expression or arithmetic operators would be invalid. Given the following variable definition of a
number:

10

def number = 3.14

The following statement will throw a groovy.lang.MissingPropertyException because Groovy
believes you’re trying to access the toString property of that number, which doesn’t exist:

shouldFail(MissingPropertyException) {
println "$number.toString()"

}

You can think of "$number.toString()" as being interpreted by the parser as

NOTE
"${number.toString}()".

Similarly, if the expression is ambiguous, you need to keep the curly braces:

String thing = "treasure’
assert 'The x-coordinate of the treasure is represented by treasure.x' ==
"The x-coordinate of the $thing is represented by $thing.x" // <= Not allowed:
ambiquous!!
assert 'The x-coordinate of the treasure is represented by treasure.x' ==
"The x-coordinate of the $thing is represented by ${thing}.x" // <= Curly
braces required

If you need to escape the $ or ${} placeholders in a GString so they appear as is without
interpolation, you just need to use a \ backslash character to escape the dollar sign:

assert '$5' == "\§$5"
assert '${name}' == "\${name}"

Special case of interpolating closure expressions

So far, we’ve seen we could interpolate arbitrary expressions inside the ${} placeholder, but there
is a special case and notation for closure expressions. When the placeholder contains an arrow,
${~}, the expression is actually a closure expression — you can think of it as a closure with a dollar
prepended in front of it:

def sParameterLessClosure = "1 + 2 == ${-> 3}" @
assert sParameterLessClosure == '1T + 2 == 3'

def sOneParamClosure = "1 + 2 == ${ w -> w << 3}" @
assert sOneParamClosure == '1 + 2 == 3'

@ The closure is a parameterless closure which doesn’t take arguments.

@ Here, the closure takes a single java.io.StringWriter argument, to which you can append
content with the << leftShift operator. In either case, both placeholders are embedded closures.

11

In appearance, it looks like a more verbose way of defining expressions to be interpolated, but
closures have an interesting advantage over mere expressions: lazy evaluation.

Let’s consider the following sample:
def number = 1 @®

def eagerGString = "value == ${number}"
def lazyGString = "value == ${ -> number }"

assert eagerGString == "value == 1" @
assert lazyGString == "value == 1" ®
number = 2 @

assert eagerGString == "value == 1" ®
assert lazyGString == "value == 2" ®

@ We define a number variable containing 1 that we then interpolate within two GStrings, as an
expression in eagerGString and as a closure in 1azyGString.

@ We expect the resulting string to contain the same string value of 1 for eagerGString.
® Similarly for lazyGString
@ Then we change the value of the variable to a new number

® With a plain interpolated expression, the value was actually bound at the time of creation of the
GString.

® But with a closure expression, the closure is called upon each coercion of the GString into String,
resulting in an updated string containing the new number value.

An embedded closure expression taking more than one parameter will generate an

NOTE . . .
exception at runtime. Only closures with zero or one parameter are allowed.

Interoperability with Java

When a method (whether implemented in Java or Groovy) expects a java.lang.String, but we pass
a groovy.lang.GString instance, the toString() method of the GString is automatically and
transparently called.

String takeString(String message) { @
assert message instanceof String ®
return message

}

def message = "The message is ${'hello'}" @

assert message instanceof GString @

def result = takeString(message) ©)
assert result instanceof String

assert result == 'The message is hello'

12

@ We create a GString variable

@ We double-check it’s an instance of the GString

3 We then pass that GString to a method taking a String as parameter

@ The signature of the takeString() method explicitly says its sole parameter is a String

® We also verify that the parameter is indeed a String and not a GString.

GString and String hashCodes

Although interpolated strings can be used in lieu of plain Java strings, they differ with strings in a
particular way: their hashCodes are different. Plain Java strings are immutable, whereas the
resulting String representation of a GString can vary, depending on its interpolated values. Even for
the same resulting string, GStrings and Strings don’t have the same hashCode.

assert "one: ${1}".hashCode() != "one: 1".hashCode()

GString and Strings having different hashCode values, using GString as Map keys should be
avoided, especially if we try to retrieve an associated value with a String instead of a GString.

def key = "a"
def m = ["${key}": "letter ${key}"] @

assert m["a"] == null

@ The map is created with an initial pair whose key is a GString

@ When we try to fetch the value with a String key, we will not find it, as Strings and GString have
different hashCode values

Triple-double-quoted string

Triple-double-quoted strings behave like double-quoted strings, with the addition that they are
multiline, like the triple-single-quoted strings.

def name = 'Groovy'
def template = """
Dear Mr ${name},
You're the winner of the lottery!

Yours sincerly,

Dave

assert template.toString().contains('Groovy')

13

Neither double quotes nor single quotes need be escaped in triple-double-quoted

NOTE .
strings.

Slashy string

Beyond the usual quoted strings, Groovy offers slashy strings, which use / as the opening and
closing delimiter. Slashy strings are particularly useful for defining regular expressions and
patterns, as there is no need to escape backslashes.

Example of a slashy string:

def fooPattern = /.*foo.*/
assert fooPattern == '.*foo0.*'

Only forward slashes need to be escaped with a backslash:

def escapeSlash = /The character \/ is a forward slash/
assert escapeSlash == 'The character / is a forward slash'

Slashy strings are multiline:

def multilineSlashy = /one
two
three/

assert multilineSlashy.contains('\n")

Slashy strings can be thought of as just another way to define a GString but with different escaping
rules. They hence support interpolation:

def color = 'blue'
def interpolatedSlashy = /a ${color} car/

assert interpolatedSlashy == 'a blue car’

Special cases

An empty slashy string cannot be represented with a double forward slash, as it’s understood by
the Groovy parser as a line comment. That’s why the following assert would actually not compile as
it would look like a non-terminated statement:

assert = //

As slashy strings were mostly designed to make regexp easier so a few things that are errors in

14

GStrings like $() or $5 will work with slashy strings.

Remember that escaping backslashes is not required. An alternative way of thinking of this is that
in fact escaping is not supported. The slashy string /\t/ won’t contain a tab but instead a backslash
followed by the character 't". Escaping is only allowed for the slash character, i.e. /\/folder/ will be
a slashy string containing '/folder'. A consequence of slash escaping is that a slashy string can’t
end with a backslash. Otherwise that will escape the slashy string terminator. You can instead use a
special trick, /ends with slash ${'\'}/. But best just avoid using a slashy string in such a case.

Dollar slashy string

Dollar slashy strings are multiline GStrings delimited with an opening $/ and a closing /$. The
escaping character is the dollar sign, and it can escape another dollar, or a forward slash. Escaping
for the dollar and forward slash characters is only needed where conflicts arise with the special use
of those characters. The characters $foo would normally indicate a GString placeholder, so those
four characters can be entered into a dollar slashy string by escaping the dollar, i.e. §§foo. Similarly,
you will need to escape a dollar slashy closing delimiter if you want it to appear in your string.

Here are a few examples:

"Guillaume"
"April, 1st"

def name
def date

def dollarSlashy = $/
Hello $name,
today we're ${date}.

$ dollar sign

$$ escaped dollar sign

\ backslash

/ forward slash

$/ escaped forward slash

$$$/ escaped opening dollar slashy
$/$$ escaped closing dollar slashy

/$

assert [
"Guillaume',
"April, 1Tst',

'$ dollar sign',

'$ escaped dollar sign',

"\\ backslash',

'/ forward slash',

'/ escaped forward slash',

'$/ escaped opening dollar slashy',

'/$ escaped closing dollar slashy'
].every { dollarSlashy.contains(it) }

It was created to overcome some of the limitations of the slashy string escaping rules. Use it when

15

its escaping rules suit your string contents (typically if it has some slashes you don’t want to

escape).

String summary table

String name String syntax
Single-quoted

Triple-single-
quoted

Double-quoted

Illlll...""ll

Triple-double-

quoted

Slashy [/
Dollar slashy $/-/8$
Characters

Interpolated
[check empty]
[check empty]

[check]
[check]

[check]
[check]

Multiline
[check empty]
[check]

[check empty]
[checK]

[check]
[check]

Escape character
\

\

Unlike Java, Groovy doesn’t have an explicit character literal. However, you can be explicit about
making a Groovy string an actual character, by three different means:

char ¢1 = 'A' @

assert c1 instanceof Character

def ¢2 = 'B' as char @

assert c2 instanceof Character

def ¢3 = (char)'C' ®

assert c3 instanceof Character

@ by being explicit when declaring a variable holding the character by specifying the char type

@ by using type coercion with the as operator

® by using a cast to char operation

The first option 1 is interesting when the character is held in a variable, while the
NOTE other two (2 and 3) are more interesting when a char value must be passed as

argument of a method call.

Numbers

Groovy supports different kinds of integral literals and decimal literals, backed by the usual Number

types of Java.

Integral literals

The integral literal types are the same as in Java:

16

* byte
* char
* short
e int

* long

* java.math.BigInteger

You can create integral numbers of those types with the following declarations:

// primitive types

byte b =1
char ¢ =2
short s = 3
int i=4
long 1 =5

// infinite precision
BigInteger bi = 6

If you use optional typing by using the def keyword, the type of the integral number will vary: it’ll
adapt to the capacity of the type that can hold that number.
For positive numbers:

def a = 1
assert a instanceof Integer

// Integer.MAX_VALUE
def b = 2147483647
assert b instanceof Integer

// Integer.MAX_VALUE + 1
def ¢ = 2147483648
assert ¢ instanceof Long

// Long.MAX_VALUE

def d = 9223372036854775807
assert d instanceof Long

// Long.MAX_VALUE + 1

def e = 9223372036854775808
assert e instanceof BigInteger

As well as for negative numbers:

def na = -1

17

assert na instanceof Integer

// Integer.MIN_VALUE
def nb = -2147483648
assert nb instanceof Integer

// Integer .MIN_VALUE - 1
def nc = -2147483649
assert nc instanceof Long

// Long.MIN_VALUE
def nd = -9223372036854775808
assert nd instanceof Long

// Long.MIN_VALUE - 1
def ne = -9223372036854775809
assert ne instanceof BigInteger

Alternative non-base 10 representations

Numbers can also be represented in binary, octal, hexadecimal and decimal bases.

Binary literal

Binary numbers start with a 0b prefix:

int xInt = 8b10101111
assert xInt == 175

short xShort = 0b11001001
assert xShort == 201 as short

byte xByte = @b11
assert xByte == 3 as byte

long xLong = 0b101101101101
assert xLong == 29251

BigInteger xBigInteger = 0b111100100001
assert xBigInteger == 3873g

int xNegativeInt = -0b10101111
assert xNegativelnt == -175

Octal literal

Octal numbers are specified in the typical format of @ followed by octal digits.

int xInt = 077

18

assert xInt == 63

short xShort = 011
assert xShort == 9 as short

byte xByte = 032
assert xByte == 26 as byte

long xLong = 0246
assert xLong == 1661

BigInteger xBigInteger = 01111
assert xBigInteger == 585¢g

int xNegativelnt = -077
assert xNegativelnt == -63

Hexadecimal literal
Hexadecimal numbers are specified in the typical format of 0x followed by hex digits.

int xInt = Ox77
assert xInt == 119

short xShort = O@xaa
assert xShort == 170 as short

byte xByte = 0x3a
assert xByte == 58 as byte

long xLong = @Oxffff
assert xLong == 655351

BigInteger xBigInteger = @xaaaa
assert xBigInteger == 436909

Double xDouble = new Double('0x1.0p0")
assert xDouble == 1.0d

int xNegativelnt = -0x77
assert xNegativelnt == -119

Decimal literals

The decimal literal types are the same as in Java:

e float
e double

* java.math.BigDecimal
You can create decimal numbers of those types with the following declarations:
// primitive types

float f = 1.234
double d = 2.345

// infinite precision
BigDecimal bd = 3.456

Decimals can use exponents, with the e or E exponent letter, followed by an optional sign, and an
integral number representing the exponent:

assert 1e3 == 1 .000.0
assert 2E4 == 20 _000.0
assert 3e+1 == 30.0
assert 4E-2 == 0.04
assert 5e-1 == 0.5

Conveniently for exact decimal number calculations, Groovy chooses java.math.BigDecimal as its
decimal number type. In addition, both float and double are supported, but require an explicit type
declaration, type coercion or suffix. Even if BigDecimal is the default for decimal numbers, such
literals are accepted in methods or closures taking float or double as parameter types.

Decimal numbers can’t be represented using a binary, octal or hexadecimal

NOTE .
representation.

Underscore in literals

When writing long literal numbers, it’s harder on the eye to figure out how some numbers are
grouped together, for example with groups of thousands, of words, etc. By allowing you to place
underscore in number literals, it’s easier to spot those groups:

long creditCardNumber = 1234_5678_9012_3456L

long socialSecurityNumbers = 999_99_9999L

double monetaryAmount = 12_345_132.12

long hexBytes = @xFF_EC_DE_5E

long hexWords = @xFFEC_DES5E

long maxLong = Ox7fff_ffff_ffff_fffflL

long alsoMaxLong = 9_223_372_036_854_775_807L

long bytes = 0b11010010_01101001_10010100_10010010

Number type suffixes

We can force a number (including binary, octals and hexadecimals) to have a specific type by giving

20

a suffix (see table below), either uppercase or lowercase.

Type Suffix
Biginteger Gorg
Long Lorl
Integer Tori
BigDecimal Gorg
Double Dord
Float Forf
Examples:

assert 421 == Integer.valueOf('42")

assert 42i == Integer.valueOf('42') // lowercase i more readable

assert 123L == Long.valueOf("123") // uppercase L more readable

assert 2147483648 == Long.valueOf('2147483648') // Long type used, value too large for
an Integer

assert 456G == new BigInteger('456")

assert 456g == new BigInteger('456")

assert 123.45 == new BigDecimal('123.45") // default BigDecimal type used
assert .321 == new BigDecimal('.321")

assert 1.200065D == Double.valueOf('1.200065")

assert 1.234F == Float.valueOf('1.234")

assert 1.23E23D == Double.valueOf('1.23E23")

assert @b1111L.class == Long // binary

assert OxFFi.class == Integer // hexadecimal

assert 034G.class == BigInteger // octal

Math operations

Although operators are covered in more detail elsewhere, it’s important to discuss the behavior of
math operations and what their resulting types are.

Division and power binary operations aside (covered below),

* binary operations between byte, char, short and int resultin int
* binary operations involving long with byte, char, short and int result in long
* binary operations involving BigInteger and any other integral type result in BigInteger

* binary operations involving BigDecimal with byte, char, short, int and BigInteger result in
BigDecimal

* binary operations between float, double and BigDecimal result in double

* binary operations between two BigDecimal result in BigDecimal

The following table summarizes those rules:

21

byte char short int long BigInteg float double BigDeci

er mal
byte int int int int long Biginteg double double BigDeci
er mal
char int int int long Biginteg double double BigDeci
er mal
short int int long Biginteg double double BigDeci
er mal
int int long Biginteg double double BigDeci
er mal
long long Biginteg double double BigDeci
er mal
BigInteg Biginteg double double BigDeci
er er mal
float double double double
double double double
BigDeci BigDeci
mal mal

Thanks to Groovy’s operator overloading, the usual arithmetic operators work as
NOTE well with BigInteger and BigDecimal, unlike in Java where you have to use explicit
methods for operating on those numbers.

The case of the division operator

The division operators / (and /= for division and assignment) produce a double result if either
operand is a float or double, and a BigDecimal result otherwise (when both operands are any
combination of an integral type short, char, byte, int, long, BigInteger or BigDecimal).

BigDecimal division is performed with the divide() method if the division is exact (i.e. yielding a
result that can be represented within the bounds of the same precision and scale), or using a
MathContext with a precision of the maximum of the two operands' precision plus an extra precision
of 10, and a scale of the maximum of 10 and the maximum of the operands' scale.

For integer division like in Java, you should use the intdiv() method, as Groovy

NOTE
doesn’t provide a dedicated integer division operator symbol.

The case of the power operator

The power operation is represented by the ** operator, with two parameters: the base and the
exponent. The result of the power operation depends on its operands, and the result of the
operation (in particular if the result can be represented as an integral value).

The following rules are used by Groovy’s power operation to determine the resulting type:

22

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#precision()
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#scale()

* If the exponent is a decimal value
o if the result can be represented as an Integer, then return an Integer
o else if the result can be represented as a Long, then return a Long
o otherwise return a Double

* If the exponent is an integral value

o if the exponent is strictly negative, then return an Integer, Long or Double if the result value
fits in that type

o if the exponent is positive or zero
= if the base is a BigDecimal, then return a BigDecimal result value
= if the base is a BigInteger, then return a BigInteger result value

= if the base is an Integer, then return an Integer if the result value fits in it, otherwise a
BigInteger

= if the base is a Long, then return a Long if the result value fits in it, otherwise a BigInteger

We can illustrate those rules with a few examples:

// base and exponent are ints and the result can be represented by an Integer
assert 2 ** 3 instanceof Integer // 8
assert 10 *¥* 9 instanceof Integer // 1_000_000_000

// the base is a long, so fit the result in a Long
// (although it could have fit in an Integer)
assert 5L ** 2 instanceof Long // 25

// the result can't be represented as an Integer or Long, so return a BigInteger
assert 100 ** 10 instanceof BigInteger // 10e20
assert 1234 ** 123 instanceof BigInteger // 170515806212727042875. ..

// the base is a BigDecimal and the exponent a negative int
// but the result can be represented as an Integer
assert 0.5 ** -2 instanceof Integer // 4

// the base is an int, and the exponent a negative float
// but again, the result can be represented as an Integer
assert 1 ** -0.3f instanceof Integer /71

// the base is an int, and the exponent a negative int

// but the result will be calculated as a Double

// (both base and exponent are actually converted to doubles)
assert 10 o instanceof Double /0.1

// the base is a BigDecimal, and the exponent is an int, so return a BigDecimal
assert 1.2 ** 10 instanceof BigDecimal // 6.1917364224

// the base is a float or double, and the exponent is an int
// but the result can only be represented as a Double value

23

assert 3.4f ** § instanceof Double // 454.35430372146965
assert 5.6d ** 2 instanceof Double // 31.359999999999996

// the exponent is a decimal value

// and the result can only be represented as a Double value

assert 7.8 ** 1.9 instanceof Double // 49.542708423868476
assert 2 ** 0.1f instanceof Double // 1.0717734636432956

Booleans

Boolean is a special data type that is used to represent truth values: true and false. Use this data
type for simple flags that track true/false conditions.

Boolean values can be stored in variables, assigned into fields, just like any other data type:

def myBooleanVariable = true
boolean untypedBooleanVar = false
booleanField = true

true and false are the only two primitive boolean values. But more complex boolean expressions
can be represented using logical operators.

In addition, Groovy has special rules (often referred to as Groovy Truth) for coercing non-boolean
objects to a boolean value.

Lists

Groovy uses a comma-separated list of values, surrounded by square brackets, to denote lists.
Groovy lists are plain JDK java.util.List, as Groovy doesn’t define its own collection classes. The
concrete list implementation used when defining list literals are java.util.ArraylList by default,
unless you decide to specify otherwise, as we shall see later on.

def numbers = [1, 2, 3] ©)

assert numbers instanceof List @
assert numbers.size() == ®

® We define a list numbers delimited by commas and surrounded by square brackets, and we
assign that list into a variable

@ The list is an instance of Java’s java.util.List interface
® The size of the list can be queried with the size() method, and shows our list contains 3

elements

In the above example, we used a homogeneous list, but you can also create lists containing values
of heterogeneous types:

24

def heterogeneous = [1, "a", true] @

@ Our list here contains a number, a string and a boolean value

We mentioned that by default, list literals are actually instances of java.util.Arraylist, but it is
possible to use a different backing type for our lists, thanks to using type coercion with the as
operator, or with explicit type declaration for your variables:

def arraylList = [1, 2, 3]
assert arraylList instanceof java.util.ArraylList

def linkedList = [2, 3, 4] as LinkedList ©)
assert linkedlList instanceof java.util.LinkedList

LinkedList otherLinked = [3, 4, 5] @
assert otherlLinked instanceof java.util.LinkedlList

@ We use coercion with the as operator to explicitly request a java.util.LinkedList
implementation

@ We can say that the variable holding the list literal is of type java.util.LinkedList
You can access elements of the list with the [] subscript operator (both for reading and setting

values) with positive indices or negative indices to access elements from the end of the list, as well
as with ranges, and use the << leftShift operator to append elements to a list:

def letters = ['a', 'b", 'c¢', 'd']

assert letters[0] == 'a' @
assert letters[1] == 'b'

assert letters[-1] == 'd' @

assert letters[-2] == 'c

letters[2] = 'C' ®
assert letters[2] == 'C'

letters << 'e' @

assert letters[4] == 'e'

assert letters[-1] == 'e'

assert letters[1, 3] == ['b', 'd'] ®

assert letters[2..4] == ['C', 'd', 'e'] ®

@ Access the first element of the list (zero-based counting)

@ Access the last element of the list with a negative index: -1 is the first element from the end of
the list

25

® Use an assignment to set a new value for the third element of the list
@ Use the << leftShift operator to append an element at the end of the list
® Access two elements at once, returning a new list containing those two elements

® Use a range to access a range of values from the list, from a start to an end element position

As lists can be heterogeneous in nature, lists can also contain other lists to create multidimensional

lists:

def multi = [[0, 1], [2, 3]1] @D
assert multi[1][0] == @

@ Define a list of numbers

@ Access the second element of the top-most list, and the first element of the inner list

Arrays

Groovy reuses the list notation for arrays, but to make such literals arrays, you need to explicitly

define the type of the array through coercion or type declaration.

String[] arrStr = ['Ananas', 'Banana', 'Kiwi'] @

assert arrStr instanceof String[] @
assert !(arrStr instanceof List)

def numArr = [1, 2, 3] as int[] ©)

assert numArr instanceof int[] @
assert numArr.size() ==

@ Define an array of strings using explicit variable type declaration
@ Assert that we created an array of strings
® Create an array of ints with the as operator

@ Assert that we created an array of primitive ints

You can also create multi-dimensional arrays:

def matrix3 = new Integer[3][3] O)
assert matrix3.size() ==

Integer[][] matrix2 @
matrix2 = [[1, 2], [3, 4]]
assert matrix2 instanceof Integer[][]

@ You can define the bounds of a new array

26

@ Or declare an array without specifying its bounds

Access to elements of an array follows the same notation as for lists:

String[] names = ['Cédric', 'Guillaume', 'Jochen', 'Paul']

assert names[@] == 'Cédric’ ©)
names[2] = 'Blackdrag’ @
assert names[2] == 'Blackdrag’

@ Retrieve the first element of the array

@ Set the value of the third element of the array to a new value

Java-style array initialization

Groovy has always supported literal list/array definitions using square brackets and has avoided
Java-style curly braces so as not to conflict with closure definitions. In the case where the curly
braces come immediately after an array type declaration however, there is no ambiguity with
closure definitions, so Groovy 3 and above support that variant of the Java array initialization
expression.

Examples:
def primes = new int[] {2, 3, 5, 7, 11}

assert primes.size() == 5 && primes.sum() == 28
assert primes.class.name == '[I'

def pets = new String[] {'cat', 'dog'}
assert pets.size() == 2 &% pets.sum() == 'catdog'
assert pets.class.name == '[Ljava.lang.String;'

// traditional Groovy alternative still supported
String[] groovyBooks = ['Groovy in Action', 'Making Java Groovy']
assert groovyBooks.every{ it.contains('Groovy') }

Maps

Sometimes called dictionaries or associative arrays in other languages, Groovy features maps. Maps
associate keys to values, separating keys and values with colons, and each key/value pairs with
commas, and the whole keys and values surrounded by square brackets.

def colors = [red: '#FFQ00Q', green: '#0OFFQQ', blue: '#000OFF'] @

assert colors['red'] == '#FF0000' @)

assert colors.green == '#00FF00' ©)
colors['pink'] = "HFFOOFF')
colors.yellow = "#FFFFoQ' ®

27

assert colors.pink == '#FFOOFF'
assert colors['yellow'] == "#FFFF0Q'

assert colors instanceof java.util.LinkedHashMap

@ We define a map of string color names, associated with their hexadecimal-coded html colors
@ We use the subscript notation to check the content associated with the red key

(3 We can also use the property notation to assert the color green’s hexadecimal representation
@ Similarly, we can use the subscript notation to add a new key/value pair

® Or the property notation, to add the yellow color

NOTE When using names for the keys, we actually define string keys in the map.

NOTE Groovy creates maps that are actually instances of java.util.LinkedHashMap.

If you try to access a key which is not present in the map:

assert colors.unknown == null

def emptyMap = [:]
assert emptyMap.anyKey == null

You will retrieve a null result.

In the examples above, we used string keys, but you can also use values of other types as keys:

def numbers = [1: 'one', 2: "two']

assert numbers[1] == 'one'

Here, we used numbers as keys, as numbers can unambiguously be recognized as numbers, so
Groovy will not create a string key like in our previous examples. But consider the case you want to
pass a variable in lieu of the key, to have the value of that variable become the key:

def key = 'name’
def person = [key: 'Guillaume'] @)

assert !person.containsKey('name') @
assert person.containsKey('key') ©)

@ The key associated with the 'Guillaume' name will actually be the "key" string, not the value
associated with the key variable

@ The map doesn’t contain the 'name' key

28

® Instead, the map contains a 'key' key

You can also pass quoted strings as well as keys: ["'name": "Guillaume"]. This is
NOTE mandatory if your key string isn’t a valid identifier, for example if you wanted to
create a string key containing a dash like in: ["street-name": "Main street"].

When you need to pass variable values as keys in your map definitions, you must surround the
variable or expression with parentheses:

person = [(key): 'Guillaume'] ©)

assert person.containsKey('name') @)
assert !person.containsKey('key') ®

@ This time, we surround the key variable with parentheses, to instruct the parser we are passing a
variable rather than defining a string key

@ The map does contain the name key

® But the map doesn’t contain the key key as before

Operators

This chapter covers the operators of the Groovy programming language.

Arithmetic operators

Groovy supports the usual familiar arithmetic operators you find in mathematics and in other
programming languages like Java. All the Java arithmetic operators are supported. Let’s go through
them in the following examples.

Normal arithmetic operators

The following binary arithmetic operators are available in Groovy:

Operator Purpose Remarks

+ addition

- subtraction

* multiplication

/ division Use intdiv() for integer

division, and see the section
about integer division for more
information on the return type
of the division.

o°

remainder

29

Operator Purpose Remarks

o power See the section about the power

operation for more information
on the return type of the
operation.

Here are a few examples of usage of those operators:

+
N
1
1

assert 1
assert 4 -
assert 3 *

assert 3 /2 ==1.5
assert 10 % 3 ==
assert 2 ** 3 ==

Unary operators

The + and - operators are also available as unary operators:

assert +3 ==
assert -4 ==0 - 4

assert -(-1) == ©)

@ Note the usage of parentheses to surround an expression to apply the unary minus to that
surrounded expression.

In terms of unary arithmetics operators, the ++ (increment) and -- (decrement) operators are
available, both in prefix and postfix notation:

2
at+ * 3 ©)

def a
def b

assert a == 3 && b ==

def c
def d

I n
o w
|
*
N
®

assert ¢ == 2 && d ==

def e
def f

1
++e + 3 ®

assert e == 2 &§ f ==

def g =
def h = --g + 1 @

I
~

30

assert g == 3 && h ==

@ The postfix increment will increment a after the expression has been evaluated and assigned
into b

@ The postfix decrement will decrement c after the expression has been evaluated and assigned
into d

® The prefix increment will increment e before the expression is evaluated and assigned into f

@ The prefix decrement will decrement g before the expression is evaluated and assigned into h
For the unary not operator on Booleans, see Conditional operators.

Assignment arithmetic operators

The binary arithmetic operators we have seen above are also available in an assignment form:

o 4=

Let’s see them in action:

def a = 4
a+=3

assert a ==

def b =5
=

assert b ==

def ¢c =5
g ¥ g

assert ¢ == 15

def d = 10
d /=2
assert d ==
def e = 10
e %= 3

31

assert e ==

def f = 3
f %522

assert f ==

Relational operators

Relational operators allow comparisons between objects, to know if two objects are the same or
different, or if one is greater than, less than, or equal to the other.

The following operators are available:

Operator Purpose

== equal

I= different

< less than

<= less than or equal

> greater than

>= greater than or equal

=== identical (Since Groovy 3.0.0)

== not identical (Since Groovy 3.0.0)

Here are some examples of simple number comparisons using these operators:

assert 1 + 2 ==
assert 3 =4

assert -2 < 3
assert 2 <=2

assert 3 <=4

assert 5 > 1
assert 5 >= -2

Both === and !== are supported which are the same as calling the is() method, and negating a call
to the is() method respectively.

import groovy.transform.EqualsAndHashCode

©EqualsAndHashCode
class Creature { String type }

32

def cat = new Creature(type: 'cat')
def copyCat = cat
def lion = new Creature(type: 'cat')

assert cat.equals(lion) // Java logical equality
assert cat == lion // Groovy shorthand operator

assert cat.is(copyCat) // Groovy identity
assert cat === copyCat // operator shorthand
assert cat !== lion // negated operator shorthand

Logical operators
Groovy offers three logical operators for boolean expressions:

» &&: logical "and"
* ||:logical "or"

* I:]ogical "not"

Let’s illustrate them with the following examples:

assert !false ©)
assert true && true @
assert true || false ®

@ "not" false is true
@ true "and" true is true

@ true "or" false is true
Precedence
The logical "not" has a higher priority than the logical "and".
assert (!false && false) == false @
@ Here, the assertion is true (as the expression in parentheses is false), because "not" has a higher

precedence than "and", so it only applies to the first "false" term; otherwise, it would have
applied to the result of the "and", turned it into true, and the assertion would have failed

The logical "and" has a higher priority than the logical "or".

assert true || true && false O)

@ Here, the assertion is true, because "and" has a higher precedence than "or", therefore the "or" is
executed last and returns true, having one true argument; otherwise, the "and" would have

33

executed last and returned false, having one false argument, and the assertion would have
failed

Short-circuiting

The logical || operator supports short-circuiting: if the left operand is true, it knows that the result
will be true in any case, so it won’t evaluate the right operand. The right operand will be evaluated
only if the left operand is false.

Likewise for the logical && operator: if the left operand is false, it knows that the result will be false
in any case, so it won’t evaluate the right operand. The right operand will be evaluated only if the
left operand is true.

boolean checkIfCalled() { @
called = true

}

called = false
true || checkIfCalled()
assert !called @

called = false
false || checkIfCalled()
assert called ®

called = false
false && checkIfCalled()
assert !called)

called = false
true && checkIfCalled()
assert called ®

@ We create a function that sets the called flag to true whenever it’s called

@ In the first case, after resetting the called flag, we confirm that if the left operand to || is true,
the function is not called, as || short-circuits the evaluation of the right operand

® In the second case, the left operand is false and so the function is called, as indicated by the fact
our flag is now true

@ Likewise for &&, we confirm that the function is not called with a false left operand

® But the function is called with a true left operand

Bitwise and bit shift operators

Bitwise operators

Groovy offers four bitwise operators:

e &: bitwise "and"

34

* |: bitwise "or"
e A: bitwise "xor" (exclusive "or")

* ~: bitwise negation

Bitwise operators can be applied on arguments which are of type byte, short, int, long, or
BigInteger. If one of the arguments is a BigInteger, the result will be of type BigInteger; otherwise,
if one of the arguments is a long, the result will be of type long; otherwise, the result will be of type
int:

int a = 0b00101010
assert a == 42

int b = 0b00001000
assert b ==

assert (a & a) == a
assert (a & b) ==
assert (a | a) ==
assert (a | b) == a

int mask = @b11111111

assert ((a M a) & mask) == 0b00000000
assert ((a A b) & mask) == 0b00100010
assert ((~a) & mask) == 0b11010101

@O &V

@ bitwise and

@ bitwise and returns common bits

® bitwise or

@ bitwise or returns all '1' bits

® setting a mask to check only the last 8 bits

® bitwise exclusive or on self returns 0

@ bitwise exclusive or

bitwise negation

It’s worth noting that the internal representation of primitive types follow the Java Language

Specification. In particular, primitive types are signed, meaning that for a bitwise negation, it is
always good to use a mask to retrieve only the necessary bits.

In Groovy, bitwise operators are overloadable, meaning that you can define the behavior of those
operators for any kind of object.

Bit shift operators

Groovy offers three bit shift operators:

o <<:left shift

* >>: right shift

35

http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html

* >>>: right shift unsigned

All three operators are applicable where the left argument is of type byte, short, int, or long. The
first two operators can also be applied where the left argument is of type BigInteger. If the left
argument is a BigInteger, the result will be of type BigInteger; otherwise, if the left argument is a
long, the result will be of type long; otherwise, the result will be of type int:

assert 12.equals(3 << 2)
assert 24L.equals(3L << 3)
assert 48G.equals(3G << 4)

©Oe

assert 4095 == -200 >>> 20

assert -1 == -200 >> 20
assert 2G == 5G >> 1
assert -3G == -5G >> 1

@ equals method used instead of == to confirm result type

In Groovy, bit shift operators are overloadable, meaning that you can define the behavior of those
operators for any kind of object.

Conditional operators

Not operator

The "not" operator is represented with an exclamation mark (!) and inverts the result of the
underlying boolean expression. In particular, it is possible to combine the not operator with the
Groovy truth:

assert (!true) == false @)
assert (!'foo') == false @)
assert (1'") == true ®

@ the negation of true is false
@ 'foo' is a non-empty string, evaluating to true, so negation returns false

® " is an empty string, evaluating to false, so negation returns true

Ternary operator

The ternary operator is a shortcut expression that is equivalent to an if/else branch assigning some
value to a variable.

Instead of:
if (string!=null && string.length()>0) {
result = 'Found'

} else {
result = 'Not found'

36

You can write:

result = (string!=null && string.length()>@) ? 'Found' : 'Not found'

The ternary operator is also compatible with the Groovy truth, so you can make it even simpler:

result = string ? 'Found' : 'Not found'

Elvis operator

The "Elvis operator” is a shortening of the ternary operator. One instance of where this is handy is
for returning a 'sensible default' value if an expression resolves to false-ish (as in Groovy truth). A
simple example might look like this:

displayName = user.name ? user.name : 'Anonymous' @
displayName = user.name ?: 'Anonymous' @

@ with the ternary operator, you have to repeat the value you want to assign

@ with the Elvis operator, the value, which is tested, is used if it is not false-ish

Usage of the Elvis operator reduces the verbosity of your code and reduces the risks of errors in
case of refactorings, by removing the need to duplicate the expression which is tested in both the
condition and the positive return value.

Elvis assignment operator

Groovy 3.0.0 introduces the Elvis operator, for example:

import groovy.transform.ToString

@ToString(includePackage = false)
class Element {

String name

int atomicNumber

¥
def he = new Element(name: 'Helium')
he.with {
name = name ?: 'Hydrogen' // existing Elvis operator
atomicNumber 7= 2 // new Elvis assignment shorthand
}

assert he.toString() == 'Element(Helium, 2)'

37

Object operators

Safe navigation operator

The Safe Navigation operator is used to avoid a NullPointerException. Typically when you have a
reference to an object you might need to verify that it is not null before accessing methods or
properties of the object. To avoid this, the safe navigation operator will simply return null instead
of throwing an exception, like so:

def person = Person.find { it.id == 123 } O)
def name = person?.name @
assert name == null ®

@ find will return a null instance
@ use of the null-safe operator prevents from a NullPointerException

@ result is null

Direct field access operator

Normally in Groovy, when you write code like this:

class User {

public final String name @
User(String name) { this.name = name}
String getName() { "Name: $name" } @)
}
def user = new User('Bob")
assert user.name == 'Name: Bob' ®
@ public field name

@ a getter for name that returns a custom string

® calls the getter

The user.name call triggers a call to the property of the same name, that is to say, here, to the getter
for name. If you want to retrieve the field instead of calling the getter, you can use the direct field
access operator:

assert user.@name == 'Bob' ©)
@ use of .@ forces usage of the field instead of the getter

Method pointer operator

The method pointer operator (.&) can be used to store a reference to a method in a variable, in
order to call it later:

38

def str = 'example of method reference'
def fun = str.&toUpperCase

def upper = fun()

assert upper == str.toUpperCase()

®OEO

@ the str variable contains a String

@ we store a reference to the toUpperCase method on the str instance inside a variable named fun
® fun can be called like a regular method

@ we can check that the result is the same as if we had called it directly on str

There are multiple advantages in using method pointers. First of all, the type of such a method

pointer is a groovy.lang.Closure, so it can be used in any place a closure would be used. In
particular, it is suitable to convert an existing method for the needs of the strategy pattern:

def transform(List elements, Closure action) { @
def result = []
elements.each {
result << action(it)

}
result
}
String describe(Person p) { @
"$p.name is $p.age"
}
def action = this.&describe ©)
def list = [
new Person(name: 'Bob', age: 42),
new Person(name: 'Julia', age: 35)] ()

assert transform(list, action) == ['Bob is 42', 'Julia is 35'] ®

@ the transform method takes each element of the list and calls the action closure on them,
returning a new list

@ we define a function that takes a Person and returns a String

® we create a method pointer on that function

@ we create the list of elements we want to collect the descriptors

® the method pointer can be used where a Closure was expected

Method pointers are bound by the receiver and a method name. Arguments are resolved at

runtime, meaning that if you have multiple methods with the same name, the syntax is not
different, only resolution of the appropriate method to be called will be done at runtime:

def doSomething(String str) { str.toUpperCase() }
def doSomething(Integer x) { 2*x }

def reference = this.&doSomething

assert reference('foo') == 'FOO'

®